
Ewww — a Web server for static sites

Lars Wirzenius

2022-06-18 09:29

Contents
1 Introduction 1

1.1 Use cases . 1

2 Requirements 2

3 Architecture 2

4 Acceptance criteria 3
4.1 Smoke test . 3
4.2 Performance test . 3
4.3 Using POST, PUT, or DELETE fails 4
4.4 Request asking file from parent of webroot fails 4

1 Introduction
Ewww is a web server for static sites. It aims to be simple code, simple to
configure, simple to keep running, and fast.

1.1 Use cases
• I have files in a directory, and a domain name pointing at the host. I

want to serve the files using HTTPS. I want the TLS certificate to come
from Let’s Encrypt, but the web server doesn’t need to be involved in its
creation or renewal.

• Same, but I have multiple domain names and each should serve from
different directories and potentially have their own certificates.

• Same, but some of the domain names are aliases for each other, and web
clients should be redirected to the main one.

1

2 Requirements
These are main, highlevel requirements. Detailed requirements are expressed as
scenarios in the acceptance criteria chapter.

• Fast, at least 100 requests per second over localhost, using HTTPS, on my
Thinkpad T480 laptop. A self-signed certificate is OK.

• Fast, time from starting server to having served first HTTPS request should
be at most 100 ms.

• Serves only HTTPS, except what needs to be served over plain HTTP, e.g.,
for Let’s Encrypt certificate validation. Any plain HTTP access must be
explicitly allowed.

I don’t need flexibility, and I don’t want to configure anything that’s not essential
for this. Hardcoded assumptions are A-OK, if my life as someone running the
program is easier.

At this point, I don’t need support for If-Modified-Since or ETag. or generat-
ing directory listings. I don’t even care about MIME types for now. Those will
probably become important once I start using this software for real, but for now
I am trying to keep requirements minimal.

3 Architecture
This is a thin layer on top of the Rust warp crate1. It does minimal processing
for each request, and does not cache anything.

At startup, the server is provided with a single configuration file, which looks
like this:

webroot: /srv/http/example.com
hosts:

- example.com
- www.example.com

ports:
http: 80, 8080, 8888
https: 443, 4433

tls-cert: /etc/letsencrypt/live/certname/fullchain.pem
tls-key: /etc/letsencrypt/live/certname/privkey.pem

The hosts are aliases; the first host on the list is the main one, the others
automatically redirect to it.

The server is started via systemd or other mechanism that binds to privileged
ports and handles process management: daemonization, restarting, etc. The
configuration specifies for each port if plain HTTP or HTTPS is expected.

1https://crates.io/crates/warp

2

https://crates.io/crates/warp

The server automatically listens on both port 80 (http) and 443 (https) so that it
can serve the Let’s Encrypt files. It only serves the /.well-known/ path prefix
in the webroot on port 80. Everything else gets redirected to 443. I don’t think
I need to serve other ports, but it’s a handy feature to have for testing, so it
shall be supported at least for testing.

There is no “reload configuration”. The server needs to be restarted. This is
good enough for me, but may not be good enough for more serious use on sites
with much traffic. Restarting should be fast.

Only the GET and HEAD methods are supported for HTTP: this is a server for
static content only. Every other method returns an error.

4 Acceptance criteria
4.1 Smoke test
given a self-signed certificate as snakeoil.pem, using key snakeoil.key
and directory webroot
and file webroot/foo.html from webpage.html
and a running server using config file smoke.yaml
when I request GET https://example.com/foo.html
then I get status code 200
and header content-type is "text/html"
and body is "this is your web page"

The following config file does not specify port numbers. The test scaffolding
adds randomly chosen port numbers so that the test can run without being root.

File: smoke.yaml

1 webroot: webroot
2 tls_cert: snakeoil.pem
3 tls_key: snakeoil.key

File: webpage.html

1 this is your web page

4.2 Performance test
given a self-signed certificate as snakeoil.pem, using key snakeoil.key
and a running server using config file smoke.yaml
and 1000 files in webroot
when I request files under https://example.com in random order 100000 times
then I can do at least 100 requests per second

3

4.3 Using POST, PUT, or DELETE fails
given a self-signed certificate as snakeoil.pem, using key snakeoil.key
and a running server using config file smoke.yaml

when I request POST https://example.com/
then I get status code 405
and allow is "GET HEAD"

when I request PUT https://example.com/
then I get status code 405
and allow is "GET HEAD"

when I request DELETE https://example.com/
then I get status code 405
and allow is "GET HEAD"

4.4 Request asking file from parent of webroot fails
The HTTP client must not be able to escape the webroot by using /../ in the
request path.

given a self-signed certificate as snakeoil.pem, using key snakeoil.key
and directory somedir/webroot
and file somedir/secret.txt from secret.txt
and file somedir/webroot/foo.html from webpage.html
and a running server using config file somedir.yaml
when I request GET https://example.com/foo.html
then I get status code 200
and body is "this is your web page"
when I request GET https://example.com/../secret.txt
then I get status code 404

File: somedir.yaml

1 webroot: somedir/webroot
2 tls_cert: snakeoil.pem
3 tls_key: snakeoil.key

File: secret.txt

1 secret

4

	Introduction
	Use cases

	Requirements
	Architecture
	Acceptance criteria
	Smoke test
	Performance test
	Using POST, PUT, or DELETE fails
	Request asking file from parent of webroot fails

